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Abstract-Several types of waves in a layered composite material were examined. In order to
obtain explicit approximate solutions. a perturbation method was used. This approach views
the nonhomogeneous layering as a perturbation on a homogeneous but anisotropic solid. For
propagation normal to the direction of layering. it was necessary to include the second-order
perturbation h:rms to get qualitative agreement. Also considered were waves which travel parallel
to the laminae. The material in these waves follows an elliptical path. the orientation of which
depends on the position in the material. All these waves are also examined numerically. and there
is excellent agreement betwL'Cn the perturbation expansions and the numerical results.

INTRODUCTION

The purpose of this paper is to present a perturbation approach in dealing with layered
materials. The approach is simple to usc and. for a particular carbon fiber composite
examined. yields results which agree very well with various numerical approaches. The basic
idea is to write the layering ellcct on the material const.tnts in terms of a Fourier series.
solve the averaged (homogenized) problem. and then take a truncated series solution of the
rest of the resulting first-order perturbation problem. In this introduction. we mention some
of the previous work. and then outline the results of this paper.

Brillouin (1946) did much early work in waves in layered media. Though he did not
look at waves in an elastic solid. he did consider waves in two- and three-dimensional
lattices and continuous media. He obtained exact solutions for some simple problems. and
used some perturbation techniques for more general cases. His approaches have had a
lasting intluence on the topic of dispersion in a layered material.

Rytov (1956) examined wave propagation in a medium composed of alternating layers
of two isotropic materials. He calculated the wave speed for shear and longitudinal waves
travelling both normal and parallel to the lamination. We will compare these results with
our approach for this case in the sequel. He then went on to calculate effective elastic moduli
for the material. now viewed as anisotropic. He was particularly interested in the thin layers
(as compared to wavelength of the elastic wave) case.

Considerable work has been done subsequently on wave propagation in layered solids.
Some was done with a view towards understanding earthquakes. as the earth can be viewed
as a layered solid and the earthqu'lkes as waves passing through it. Iv'lkin (1960) studied
wave propagation in a periodically layered material by an analogy with electric circuits.
The approach used involved matching impedances at each boundary and is rather tedious.
In fact. the author concludes " ... the determination of the velocity of propagation and of the
amplitudes of sinusoidal waves in fine-scale nonhomogeneous media constitutes a laborious
problem .. ," (p. 108).

More recently. some work has been done particularly with reference to artificial
materials such as carbon composites. Sun el al. (1968) present a continuum theory and
display dispersion curves for various waves in a layered material. They linearly expand the
displacements about the midplanes of the layers. and then require that some continuity
conditions be satisfied at the layer boundaries. An expression for the energy is derived. and
Hamilton's principal is used to obtain (approximate) equations of motion.

t Currently at Southwest Research Institute. Division of Engineering and Material Sciences. San Antonio.
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:"ayfeh and Nemat-Nasser (1972) examined one-dimensional waves in harmonic
media. and wae able to reduce the probkm to the study of a \Iathieu equation and a Hill
equation. They examined in detail their Hill-type equation. Lee and Yang (1973) also
examined this problem. and looked at the behavior of solutions of the one-dimensional
problem near the discontinuities in the dispersion curve.

In two papers. Hegemier and Nayfeh ( 1973) and Hegemier and Bache (1974) developed
a continuum theory for layered media with a similar approach. The latter paper. in fact.
attacked the problem ofv,iaves travelling at an arbitrary angle in a layered solid and included
phase velocity versus angle of propagation curves.

In a series of two papers. Ben-Amol (1975a.b) examined wave propagation in a
direction parallel to the laminae and normal to the laminae. This was done by assuming
relative orders of magnitude for the solution. and then discarding the pieces of the solid
equation which would then be negligible. He concludes that the behavior of a laminated
composite material is "predominantly that of a macroscopically homogeneous medium"
(page 43).

Delph e( al. (1979) consider plane strain harmonic waves in a periodic medium. and
show that the dispersion spectrum is governed by the eigenvalues of an 8 x 8 matrix with
complex entries. The approach used was to write the displacements in terms of complex
exponentials.

This leads to the purpose of this paper. Herein will be llcscribed a perturbation method.
and snme n:sults from it. to ohtain dispersinn curves and displacements for harmonic waves
in an anisotropic layered medium. First. we will descrihe the notation we will usc. and write
down the equations of elasticity which we will assume tn hold. We will view the material
as a continuous medium with noncontinunus elastic cnnstants. and thus avoid needing to
deal with boundary conditions. For comparison purposes with some of the ahove work.
we will in particular consider the case nf a material made nf alternating layers of two
anisotropic materials. The methnds presented apply to mLich more general N layers situ­
ations. but this case is presented as an example and to show the validity of the technique.

In the one dimensional simplification. the method will give rise to the snlution of a
nonlinear ordinary ditrerential equation. This equation is first derived. and then an approxi­
mate perturbation solution is presented. It is found that to ohtain qualitative agreement
with the dispersion curve it is necessary to include the leading terms of the second-order
perturhation.

Next. the equations arc derived for propagation parallel to the laminae. and per­
turbation solutions arc ohtained for the two cases of on average longitudinal and on average
shear waves. [t will be found that to the first-order perturhation these arc nondispersive.

The one-dimensional case will then be returned to. and examined numerically. Agree­
ment will be shown with the perturbation approach. the numerical solution. and Rytov's
solution for the specific example case. The interesting behavior of the solution of the
nonlinear ordinary ditl'erential equation will lead to a more general discussion of it. in
particular the question of existence of solutions. This relates back to the question of lack
of continuity of the dispersion curve. The change of behavior of solutions in the vicinity of
the break in the dispersion curve is demonstrated.

Finally. the parallel waves are examined numerically. This necessitates the solution of
a generalized eigenvalue problem. which is done by factoring the problem. and rewriting it
in standard eigenvalue form. For a range of frequencies the numerical solution is shown to
be nondispersive.

It is hoped that the methods used in this paper present a straightforward approach to
the propagation of waves in a layered solid. and that it will throw more light on the behavior
of such waves.

1'1 IE AP('RGAUI

Consider a material made of N layers of an anisotropic. clastic material. A periodic
layering of height h is assumed. with the layering occurring in the r direction. This means
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the thickness of these .v layers would add up to h. Each of these layers will be assumed to
be linearly elastic. with the appropriate elastic constants. After having put our material
together. we will view the "constants" in Hooke's law as being dependent upon y. If c,,(Y)
are the various constants in Hooke's law. then they may be written in the form

( I)

where there is no implied summation. The e'J (without the (y) terms are the average values

(2)

the constants elil are the local deviations. and the P,; function takes into account the actual
structure of the laminae. The reason we are choosing to write dUpiJ(Y) rather than du(y) is
that often there are symmetries in a lay-up which produce the same p,j for different ij.

In general. layers will have different densities. and so we will also write

(3)

If laminae are made of the same material at different angles with respect to the anisotropy.
the density will be constant throughout. and ell' will be zero.

To actually solve the equations coming from the perturbation. smooth 1'" arc needed.
Since they arc in a sense the periodic deviation from homogeneity for the material. it is
natural to expand them in a £7ourier series:

I',,(Y) = I {P'I.n sin (mY)+lf"." cos (lI:1y)}.
,,- I

2n:
:1 == II . (4)

The:1 term will be appearing often. and one should view it as 2n: times the "frequency" of
the layering.

This general approach of using a Fourier series to describe the inhomogeneity of the
material makes it possible to model many situations. By picking appropriate pij. one can
describe layers of difl'crent thickness. layers with glue between the layers, and layers of
completely different nwterial.

A PARTICULAR PROHLEM

As an example of a way to usc the above ideas, and some results from them. wave
propagation in an anisotropic layered material will be considered. One way of viewing this
problem is as separate layers where the above sets of constants hold. and trying to match
the solutions in each layer at the layer boundaries. This is very difficult. but it is the way
the problem is often attacked. We have chosen to write the material parameters as functions
which arc position-dependent. For the infinite periodic medium there are no boundaries.
but the partial differential equations no longer have constant coefficients. This naturally
leads to a perturbation approach.

To examine waves travelling in a plate. a plane strain model was used. as this cor­
responds to taking a slice through the plate. The equations are (see Malvern. (969)

(5)

(6)

where the foil are the strains. the ei,(y) arc the coefficients from Hooke's law, p is the density.
and subscripts I and 2 refer to x and .r directions. respectively.
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A P:\RTICULAR MATERIAL

As a practical matter. we consider the material Hercules A.S. 4,3501-6. This material
is made of thin carbon fibers (very thin-they are about 10 JIm. or 0.001 Col in diameter)
which are placed in an epoxy prepreg and pressed into thin sheets. where the fibers all
run in one direction. These sheets are then stacked so that in each layer the tlbers run
perpendicularly to the tlbers in the previous layer. At this point the sheets are heated and
pressed together. so that the epoxy is a continuous matrix of supporting tlbers which run
in two difl"crent directions. The resulting plate is of the form ... 0 /90 ;0 /90 ., . (sec Fig.
I). Each layer is quite thin. and a plate of this material one-quarter inch thick has about
25 layers. With this configuration. It = 2( 1/1(0) inch = 0.02 inch.

Let us consider. therefore. such a composite plate made of alternating layers. with
layer I having fibers running in the x direction. alllilayer 2 having libel'S running in the ::
direction (out of the plane). The resulting (''/ and el,/ values arei'

('II = I I . 1900 til I = l).6350

(':: = I.7IXO tI,: = 0.0000

('I, = 0.(,27(, til, = 0.042(,

('r., = 0.6060 dr." = 0.1040

in million pounds (force) per square inch. For this case. we have

(

I.

1',/(.1') =

-I.

II
O~r<-,

II
~ .. <II') .

(7)

Since 1',,(.1') is the same for all ij. we let 1',;(.1') = fI(Y). and expand 1'(.1') in a Fourier series
to get

{
4/7l:n.

IJ -,,- O.
n odd

11 even.

with all the 'I" being zero. Also. since the material is the same throughout. the density IS

constant and we have eI" = O.

r-;OR~lAL PROPAGATION. AND A LOCAL WAVESPEED

In this section. the problem of normal propagation in the layering is considered. Roth
the 10n1!.itudinal and transverse waves 1!,ive rise to the same type of equation. with the
material constants being different. In ord~r to relate to the specific material discllssed above.

t Data from Ikn.:uks. 5 L.C .. Utah.
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the case of the transverse wave will be considered, since, for the longitudinal wave d!! = O.
and one has a general travelling wave (see below).

The form of the wave solution will generally be

f= sin (m(cp(y)-t». (9)

In this case the wave is propagating in the +y direction (for the case of waves propagating
in the x direction replace y by x). To compare with the more usual approach, one takes

f = sin (ky-mt) (10)

and then examines the relationship between the phase speed and the wave number k. where
k is independent of y. The approach here is quite different. The wave speed is allowed to
vary locally. and by following a constant angle or phase in the sine term one arrives at

m(<p(y) - t) =constant.

so that for a constant frequency

dcp dy = I
dy dt •

or

dy I
wave (phase) speed = d" ~ = ,

t cp

(II)

( 12)

( (3)

where the prime denotes differentiation with respect to y. If the wave is dispersive. cp' will
have an m dependence. The frequency v of the wave, or number of oscillations per unit
time for a fixed point in space. is then 2n:v = m' I or

v m

I Cl:

h

Notice that

m
frequency = v = -.

2n:

frequency of wave
= - = --

freq uency of material

( 14)

(15)

We will find that in the solutions to be obtained. m and a will alwuys appeur in the ratio
mla.

For the transverse case. we assume a solution of the form

u = rt(y)f(cp(y) - t)

v = O.

(16)

(17)

where rt(y) now represents an amplitude modulation of the overlying travelling wave. This
amplitude modulation is fixed in space.

Equations (5) and (6) yield
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( 18)

The reader may also note that for the longitudinal case the equation is of the same form,
I.e.

( 19a)

and that if cdy) is a constant (dn = 0) then

( 19b)

which is the equation for a general travelling wave. This justifies the previous remark.
Carrying out the substitution u = rJf one finds

(20)

where the prime denotes differentiation. Letting C66(r) = c(y), as there is only one C'I which
appears, and expanding one finds

Our next step is to remove the f' tcrm by rcquiring its coefficient to vanish. i.e.

c'r/lp' +c(2r(lp' + 1]11''': = o.

If this is divided by OJlP', one ohtains

C' 1]' (I'''
+2 + ,= o.

c r/ II'

which can be integrated to give

A
(I" = '-,

cI]-

(21 )

(22)

(23)

(24)

where A is a constant of integration (A is nonzero as it is the exponential of the actual
integration constant). Placing this rather nice result back in eqn (21) gives

(25)

which can finally be reduced to

(26)

This equation has periodic boundary conditions with period h. To proceed further,
some assumptions on f must be made. Suppose that r = -m'f, as it would if it were
sin (m(.» or cos (m(.». This yields

(27)

as an equation for I](Y). Now fix m. where m can be any real number.



Effect of stress waves

In this case. the wave (phase) speed is from eqn (24):

I C11~
phase speed = --; = - .

qJ A

151

(28)

This leads one to wonder about the effect of the constant A in the" equation. If we let"
be a solution \\ith A, as the constant. and if we let ~ be a solution with A~ as the constant.
then A~ = kA, for some k (A is nonzero). and making the substitution in the ~ equation
gives

If this is divided by Jk. it is concluded that ~/Jk = " and that

A~ kA, A,
Jt~ = (Jk,,)~ = ,,~ .

(29)

(30)

One concludes. therefore. that A is quite arbitrary as far as physical meaning goes. (This
can also be seen by dividing eqn (27) by JA.) Thus. in the following. we let A = I.

As nonlinear equations are difiicult to solve. a perturbation approach is used to linearize
the equation in order to glean some information on '1. The quantity f. will be used as an
expansion parameter to obtain equ'ltions in various powers of 1:. after which /: will then be
set equal to I. Suppose

(31)

This leads to

(32)

Using a similar expansion for the coelficient involving P (let P66 be written ep), one has

(33)

Upon substitution into eqn (27), and letting p be written as p+edl,pp • one obtains an
equation with various powers of e.

Separating and equating powers of e in this equation yields three equations:

1 (I)" (d (0)')' m
2

(d66 3 I) 'I 'od 0e : C66" + 66P" + (0)3 -p+ 0" +m-p" +m-" PPP= ,
C66 " C66 "

(34)

(35)

I [( l)~ (') Id (d )'Jf.2: ("t)"d66P+("I)'d66P'+C66(,,2)"-m2-J- 6 "0 -3 '1: +3"0~+ ~-
"OC66" " "C66 C66

+m2('1ldp+p,,~) = O. (36)

There is a simple solution to the eO equation. namely
lAS 29.2-.
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(37)

a constant. This simplifies the c; I equation giving

(38)

This equation has periodic boundary conditions of period h.
Using the Fourier series expansion for the p and p". a solution to this c; I equation can

be found using the orthogonality of the basis. The form of the solution 'I' is

(39)

A substitution. use of orthogonality and some algebra gives

[ (n:X)2J 0 { d 06 }4p-c60 - hn = -'1 fl. qn +d,.q".n ."1 (61,

(40)

(41)

As will also occur for the waves travelling parallel to the layering, n(:x/m) always occur
together. :x/m is a measure of the frequency of the wave to the "frequency" of the material.
Mon.:over, :x is large for thin layers and m is large for high frequencies. For this case, the
perturbation is expected to be good for both large and small n(#m). Equation (40) implies
that (/" is approximately a constant multiplied by Pn for small n(a/m), and that an is roughly
inversely proportional to (n(a/m)2 for large n(:x/m).

By examining eqns (40) and (41) it is seen that if

(42)

a solution to the I; I problem does not always exist. This nonexistence occurs for

(43)

This will be explorcd morc fully in a latcr section.
It was found in the course of the investigation that the dispersion curvc of thc first­

order perturbation solution had some qualitative disagreement with exact solution in the
neighborhood of the nonexistent first-order perturbation. This led us to consider the second­
order perturbation. Since a full second-order term would be dimcult to obtain, an approxi­
mate one will be found. As we arc interested in regions where eqn (42) nearly holds we fix
n where this holds, and see that an and hn arc large. This implies the ('1 1

)2 term dominates
the non-'1 2 terms of (36), leaving

, " " ,I . ) h ( ,
f."' C06('1-)' +4,n-pt,- :::::: 6m- 0 p(an Sill (n:xy + n cos n:xy»-

'1

(n is fixed here). A solution to this equation is

(44)
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where

and

Using the fact that 4p ~ c66(n'X/m)2 and doing some simplification, we obtain

I , ,
gin ~ 2,,0 (a,;+2b,;)

I
g2n ~ - oanhn

"
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(45)

(46)

(47)

(48)

When the dispersion curve results are later presented, this second-order result will be
included.

This at least gives a better feci for the solution. It is interesting to note that for high
frequencies (large m), eqn (27) gives

(49)

while for low frequencies '1 ~ (PC66) - 1/4. To see an interesting sidelight of eqn (40), we let
for simplicity {qn} and dp be zero, then for large m and small n,

(50)

which gives

"~"o +'11~ (PC66)-1/4 {l- L :~6 Pn sin (n'Xy )} ~ (PC66)-1/4 {l- :66 P(y)}.
trun<lllcd e66 C66

(51 )

This is the first term of the Taylor's expansion of eqn (49). Thus the perturbation solution
agrees with both the large and small m limit solutions.

In summary, it is of some practical interest to note that at high frequencies there is a
surprising inverse quarter-power amplitude modulation of the wave, while at low fre­
quencies the wave hardly notices the inhomogeneity of the material at all. There is a discrete
spectrum of frequencies where € I perturbation problem does not have a solution.



15-l 1. D. WALKER and E. S. FOLlA.S

WAVES PROPAGATING PARALLEL TO THE LAMI:'-lAE

Here there do not exist purely longitudinal or purely transverse waves. but the same
idea applies. A perturbation method is used to obtain some approximate solutions.

First. the following form of the solution is assumed:

II = T/(Y) cos (mUx- t))

r = /ley) sin (m(ix-t)).

(52)

(53)

where i. is a constant. This form is chosen since a travelling wave is being looked for. and
the solution is expected to have a y dependence in the amplitude. In this case a variable
phase speed is not being considered because if the phase speed did depend on y. the wave
would separate in the layers. which is not desirable. In addition. an x-dependent wave speed
is not expected since the material properties do not change in the x direction.

It seems wise to elucidate some assumptions in the above equations. It has been
assumed that the actual solid "particles" follow an elliptical path. To see this. fix y and
note that

(54)

As will become app'lrent. the "longitudinal" wave will have a m'ljor axis in the direction
the wave travels. while the "transverse" wave will have a m'ljor axis norm'll to the direction
of wave propagation. On a physical note. it has been assumed that the frequency is not so
high that the layers arc acting as waveguides. Waveguiding will probably occur at high
frequencies. meaning the wave will separate in each of the layers. the wave in one layer
travelling faster than the wave in the other layer. Though the assumed form of solution
leads to solutions of the solid equations for almost all frequencies. we suspect that exper­
imentally these type waves would be very ditlicult to produce for high frequcncies. as
waveguiding would morc naturally occur.

The assumed II and v are placed in the original solid equations. eqns (5) and (6). to
gIve

(C II +d"P,,)( _m 2). 2)1/ cos (.) +D 2(c66 +d66Phh)l( eos (.) + (c12 +dI2pdm).!t' cos (0)

+D 2(c"" +d""p",,)mi.1l cos (0) = -m 2pT/ cos (0). (55)

(C h,. +dhhP)( -mi.)r( sin (o)+U2(CI2+dI2P)( -mi.)T/ sin (')+(c"h+dh6P66)( -m 2i.")lt sin (.)

+cd/'sin(')= -m 21'ItCoS(·). (56)

whae 0 corresponds to m(i.x - t) and the prime denotes differentiation with respect to y.
The cos (.) can be factored out of the first equation and the sin (0) can be factored out of
the second equation. since they do not depend on .l'.

This is what is left :

(C II + dIIPII)( -m~ i. ")11 + «C66 + d66P66)rJ')' + (cl ~ + d'2plZlmi·ll'

+mi,«c66+d,,6P66)lt)' = -Iwpll. (57)

(e 66 + d6hP66)( -mi.)I" - mi,«c," + eI, ~P I JT/)' + (C"6 + dh"Ph")( - m" i. ")It

+C""ll" = -IWPII. (58)

These are coupled ordinary differential equations. with periodic boundary conditions.
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Once again the system only seems amenable to a perturbation approach: thus one may
proceed as follows. Think of inserting an e in front of the P term. and use an expansion of
the form

(59)

(60)

The zero order (eO) equation is

(61)

(62)

Let a = C12+C66 as this term will occur again. The first order (e l) equation is

- CII m2). 2'1 1+C66('1 I )" +am),(J-lI r +m 2P'1 1 = m 2). 2dllPII '10 - (d66P66('1°rr

-mAdI2PI2(J1.°y -m).(d66P66J1.°y -m2dp pp'1°. (63)

-am),("I)' -C66m2).2,11 +C22(J1. I)" +m2P11 1 = m).d66P66('1°)+m).(dI2PI2'1°r

+m2).2d66P66J1.° -m2dp pp llo. (64)

There are two simple solutions to the equations, first

(65)

where the ,,1: = I is an arbitrary selection as the equations are linear, and

(66)

The subscripts will distinguish these two cases. Similar to the normal wave. ). is inversely
proportional to the wave speed, and it is immediately seen that the above two solutions are
two different types of waves, as they travel at different speeds. This is, of course, not
unexpected: transverse (shear) and longitudinal waves in a homogeneous, isotropic solid
also travel at different speeds.

PARALLEL LONGITUDINAL WAVES

This section examines the longitudinal waves, or those arising from eqn (65). The first­
order perturbation equation (eqns (63) and (64» becomes

( I)" it (I)' 2 dll
() 2dC66 '11 +am - J1.1 =m P-PII eey -m pPp,

ell ell

it(I)' (I)" (I C66) 'I itd '( )-am -"1 +C22 J1.r + - - m"PIII = m - I2PI2 eey.
CII CII Cli

One has a solution by assuming the following forms:

(67)

(68)
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f..

,,:Cv) = L {a. sin (n:xy)+:x. cos (my)},.= I

f..

J.l: (y) = L {b" cos (n:xy) + fJ. sin (n:xy)}.
n=!

(69)

(70)

Placement of these in the first-order eqns (67) and (68) gives a system for the a" and b",
namely

(7\)

(72)

and a similar system for the :x. and fJ•.
Solution of these gives the first-order perturbation for the longitudinal case. Dividing

both equations by m 2 leaves the equations in a form where m and :x do not exist indepen­
dently, but only the ratio :x/m occurs:

f~1 :x ') (' eI II ')-(lY('llfI,;; () P(~I-I.PII.• -el,,p,..,,
ll,, ~

N 2 . h = {1 :x .
., '-A. ( fltl n

-('2ZfI- Z + (1- )p). dlzn PIZ.",
'" ('II (II '". '

(73)

Solution of this system gives the (I" and the h". The :x" and If" arc given by

ell I )'p'O"if. I I,'" - d,.if,.."
('II

Jp :x .
- --- d 11f1 PI 2."

('II m !

(74)

It may be noted that there are situations here. as in the normal case. where solutions
to the c I problem do not exist. This occurs when the determinant in the systems (73) and
(74) vanishes, that is, when

(75)

This implies that a solution does not exist for frequencies

(76)

Near these frequencies the determinant will be small implying that the specific a., b., :x.
and P. will be large. It is thus expected that the perturbation will not be good near these
frequencies.

Thus the coeflicients a. and the b. only depend on the ratio :x/m, which measures the
wavelength of the wave in comparison to the spacing of the layers of material. For large
:xlm, meaning low frequencies. the (I" and b. are given approximately by



Effect of stress waves 157

(77)

(78)

The perturbation terms a. and b. are small when aim is large. or when the wavelength of
the wave is large compared to the spacing of layers.

The wave travels at the root mean square average speed in the material. To see this,
recall that ell is the average of the ell (y) in the layers. so that

(d.r)2 =(!)2 =~ =! fh ell (y) dy.
dt A. p h Jo p

(79)

The wave has a tumbling structure. It travels in the high speed layer and then tumbles into
the low speed layer. which results in the average wave speed observed.

To justify the statement about the longitudinal waves corresponding to ellipses with
the major axis parallel to the axis of propagation. recall that '1: and II: are small. so that

'l1(Y) ~ I +"l(y). (80)

111(Y) ~ Itl(Y)· (81 )

Since

, ,
u· v-
~-~+--= I (82)
('l(y»2 (JI(y»2

it is seen that II is the major axis. and II corresponds to material displacement in the x
direction.

PARALLEL TRANSVERSE WAVES

For the transverse wave, from eqns (63), (64) and (66), the first-order perturbation
equation is

(83)

(84)

and one can proceed with" I and JlI as given in eqns (69) and (70).
The equations solved by the coefficients are (already dividing through by m 2)
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(

. -coon! x: +P(l- C_I_I)
m- C 6 6

a fPn~
-V~ m

(86)

As in the longitudinal case, the wave speed is the root mean square average of the wave
speeds of transverse waves in the two layers.

Here. existence of the solution to the e l problem does not occur if

whose frequencies are

nJcl>/> {v= I
II I'

Hac. with 11~ and Id slllall and

(87)

(XX)

'/ !(y) .~ '/ ~(y) (89)

(90)

the major axis of displacement is l" or perpendicular to the direction of wave propagation.
which is why these waves are called transverse waves.

Finally, supposing one had started with

II = 1/(.1') sin (m(i.x - t)

l' = Il(Y) cos (m(i.x-l).

it is seen that the above longitudinal results go through if one replaces

(91 )

(92)

(93)

Similarly, the transverse results go through if one replaces

(94)

SOME NUMERICAL RESULTS FOR THE NORMAL WAVE

In order to verify the perturbation and to examine the solutions of eqn (27) in the
regions where the perturbation fails, numerical solutions were obtained. These were for
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Table I. The numerical results for '11m = 0.0001 (log,o (x/m) = -4)

Two terms Six terms
: ,,"'..,.(:) "..,,(:) % Error ,,-(:) % Error

0.3307 0.328356 0.325574 -0.8 0.325646 -0.8
0.6614 0.328817 0.326130 -0.8 0.326182 -0.8
0.9921 0.329152 0.326559 -0.8 0.326560 -0.8
1.3228 0.329335 0.326813 -0.8 0.326769 -0.8
1.6535 0.329384 0.326865 -0.8 0.326813 -0.8
1.9842 0.329279 0.326710 -0.8 0.326685 -0.8
2.3149 0.329043 0.326364 -0.8 0.326392 -0.8
2.6456 0.328652 0.325865 -0.8 0.325934 -0.8
2.9762 0.328142 0.325266 -0.9 0.325314 -0.9
3.3069 0.327396 0.324634 -0.8 0.324585 -0.9
3.6376 0.326614 0.324035 -0.8 0.323966 -0.8
3.9683 0.326053 0.323536 -0.8 0.323508 -0.8
4.2990 0.325675 0.323190 -0.8 0.323215 -0.8
4.6297 0.325516 0.323035 -0.8 0.323087 -0.7
4.9604 0.325554 0.323087 -0.8 0.323131 -0.7
5.2911 0.325810 0.323341 -0.8 0.323340 -0.8
5.6218 0.326261 0.323769 -0.8 0.323718 -0.8
5.9525 0.326920 0.324326 -0.8 0.324254 -0.8
6.2832 0.327724 0.324950 -0.8 0.324950 -0.8

L 2 norm of residuals = 0.1615644E·14.
Average phase speed = 5252 ft s - '.

the specific case of the Hercules A.S. 4/3501-6 material previously mentioned, and with
the ... 0°/90"/0"/90" ... configuration.

The method of choice was Galerkin's method. whkh changed the problem to that of
the solution of a set of algebraic nonlinear equations of the form

(95)

where A is a nonsingular matrix. ((l(y) a row vector of basis functions, and the approximate
solution is ,,(y) ~ (I>(y)c.

Being a periodic equation. a Fourier sine and cosine basis was used, with 19 basis
functions. MINPACK was used to solve the nonlinear algebraic equations and took
approximately I min to converge on a VAX 8600 with

(96)

as the initial guess. For details the reader may consult Walker (1988).
Table I displays the results for a specific frequency. a./m = 0.000 I, or from eqn (15):

I(m)v = h ~ = 0.5 MHz. (97)

Shown here is the comparison of the computed solution with the perturbation expan­
sion truncated at two terms, ,,0 and one term of"l,

(98)

and six terms. ,,0 and five terms of"l,
SAS 29.2-c
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Table 2. The perturbation solution compared with the computed solution for various
7:m

Two terms Six terms Wave (phaset
% Error % Error speed (ft 5 - ') L: norm of

log,,, (xm) Ave. :\lax. Aw. Max. Ave. residuals

0000 0.7 0.7 07 07 5413 0.H4320-1\.I
-l.OOO 0.7 0.7 07 0.7 541.1 O.H43HD-I\.I
-2.000 0.7 0.7 0 7 0 7 5413 07107D-19
-3.000 0.7 0.7 0.7 0.7 5413 o 7936D-19
-.t.OOO 0.8 0.9 0.8 0.9 5426 o 1616D-14
-4.540 7.7 10.2 7.7 10.2 61.10 02097D-13
-5.000 11.5 22.1 5.1 12.6 5557 012670-13
-5.500 2.8 7.7 0.7 1.8 53~J 0.61720-D
-6.000 1.4 41 05 1.0 5316 0.12990-1.\
-7.000 U 4.0 0.5 1.0 5317 0.11010-13
-SOoo U 4.0 05 l.O 5"~ t7 O.10980-D
-9.000 U 4.0 0.5 1.0 5317 n.10980-13

-IO.nOO 1.3 .t.O 0.5 l.O 5.117 0.1098D-13

~

tl .:::; tl O + tIl :::; (pc hh) I ~+ '\ an sin (11:). (99)
t...

n I

There arc six terms since the Fourier sine expansion of the periodic square fUllction has fin

and therefore II" equal to zero for even 11. The percentage error is simply

a " I()() 'lpcrturh:HItHl - 'l;;tllt1 IHih.:d
,'f) error = x _

'1I.:Ilmpu!..:d

( (00)

To get the phase speed. or how fast the front of the wave travels, consider how long it will
take the wave to travel a distance II. One has that Ijep' is the local phase speed hy eqn (I J).
Thus, the time to travel the distance Iz is

This gives

~I

Iz {J'II } Iphase speed = = II ~ dy
~I tl (CI>I. + dtotoP)tl

(101)

( (02)

This is also included in the table. The wave speed is ncar one mile per second.
Next, Table :2 shows some results for a range of 'Y.llt/. The numerics arc the same as

above, and the average percentage error and maximum percentage error refer to the absolute
values of the percentage error.

For loglo('Y.!m) > -4 the wave speed is constant, and the errors stay at the limiting
values indicated in the table. This is also true for the region loglo ('1.!m) < - 5.5, which is a
result of a finite number of basis functions used in the numerical solution. For values of
log In ('1./m) the accuracy of the perturbation depends on how close one is to an eigenvalue
of the homogeneous problem, as is demonstrated in Fig: 2. The relationship between the
homogeneous problem and the numerical solution will be explored more fully in the next
section.

Next, Fig. 3 is a phase speed plot with only the first order perturbation. for a range of
'1./m. The upper curve is the phase speed of the wave based upon the numerical solution
of eqn (27), while the lower curve is the phase speed based upon 50 terms of the first-order
perturbation solution to the same equation. Breaks occur where the numerical method does
not converge. The phase speed is not continuous. The qualitative difference in these two
graphs is what led to an examination of the second-order perturbation. The lack of peaks
at higher frequencies in the numerical solution will be discussed in the section on existence
of solutions.
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Fig. 2. A plot of the maximum percenlage difference between the two perturbation 50lution5 and
the numerical 50lution. The upper curve i5 the two term error, and the lower curve is the six term

error. Frequency incrclIses from right to left (liS"' increases).
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Fig. 3. A plot of thc phase speed versus log,. (/1./m). The upper curve is the numerical result, while
the lower curve is the perturbation result with 50 terms:
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Fig. 4. A plnl of the dispersion curVe for the pcrturbalion solution with sec(>nd·order terms (solid
curve), as well as a plot of the actual solution due to Rytov (dashcd curvc).

Figur~ 4 displays the dispersion curv~ for the perturbation solution including both
first-order and approximate second-order terms (50 of each). With it is displayed the
disp~rsion curve for th~ exact solution found in Rytov (1956) (and also found in ljl1antum
mechanics textbooks where the periodic square well potential is discussed). If

Ie hI> '- tlt•t,/', = i. V p
( 1(3)

then this dispersion curve is given by

cos (.~. m) cos (.~. ''.:) _~ (1'1 + t':) sin (rr. m') sin (It '!~) = cos (21t",) (104)
/'1 ':I. t·! :x 2 1'! L'I l'1 7. l'! ':I. l' 'J.

where l' is the phase speed. Notice that the exact solution in Fig. 4 and the numerical
solution displayed in Fig. 3 agree very well. Also. the perturbation solution including
second-order terms agrees at least qualitatively with the actual dispersion curve. There arc
two apparent differences. First. the perturbation curve has only half as many discontinuities.
This is due to the Fourier series expansion for p(y) only having nonzero 1'" for n odd (p" == 0
if 11 is even). If the even Ill'" terms were nonzero. the perturbation-derived dispersion
curve would have as many discontinuities as the actual dispersion curve docs, The second
difference is the low frequency limit of the phase speed. In the actual curve it is

(
I 1)'12 - + - = 5273 ft s - I.

!' 1 t'z
(105)

while in the perturbation case it is

(106)
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Overall. however. agreement is good. and this demonstrates the validity of the perturbation
approach.

A D1SCUSSIOl' OF EXISTENCE

This section discusses the existence of the nonlinear ordinary differential equation dealt
with in the previous sections. The existence of a solution is not proved. but a relationship
is demonstrated between the failure of the numerical method and the eigenvalues of the
linear portion of the equation.

Equation (27) is, after letting == :cy and dividing through by c66'X,2jm
2
•

m
2

j:c
2 (p m

2
) d

«I+rp(=»r()'-(I (» ,+ --, ,,=0. r=~,
+rp =,,- C66 'X," Cbb

(107)

with periodic boundary conditions of period 2/t. and where the prime denotes differentiation
with respect to =.

In a paper by Lazer and Solimini (1987), the existence of a periodic solution to the
equation

is proven for a ?: I and

" IU---=9
It'

r 9 < O.
JrerHt4.1

(108)

(109)

Unfortunately, the proof depends upon the existence of a lower bound on u obtained by
the existence of an upper bound on 9 (which exists because 9 is piecewise continuous on a
closed interval). So the method of proofdoes not apply to the equation considered. However.
if a solution of eqn (107) did exist it would presumably be positive and so

1
2~ (p m 2

)
- - 2 "dz < 0

o C66 'X,
( 110)

and the corresponding a = 3 > 1. Comparing forms makes it seem reasonable for a solution
to exist.

Next the Green's function will be formally developed. Let

(fu')' + ),u =g. f?: C> 0

with C a constant. As the homogeneous part.

(JuT +).u = O.

(III )

(112)

is a Sturm-Liouville problem. there exists a complete set of eigenvalues and eigenfunctions.
Call these P.i} and {!Pi}' If 9 is square integrable, it can be expressed in terms of the {!Pi},

(113)
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Assuming the solution u to be square integrable, one has

u =: 2: U,<p,.

Using orthonormality of the eigenfunctions, the original equation yields

or

~ ~ g, ~ Jg(~)<p,(O d~
u = 1... LI, <Pi = 1... -,-. <P, = 1... ., <p,(z).

I i )~ - 1., ,. I. - I.,

( 114)

(115)

( 116)

In this, the integration is over the domain of LI. If one exchanges the integration and the
summation and lets

then LI can be written

II =: fG(:, (, A).£/(O d~

( 117)

(liS)

where G is called the Green's function.
If the nonlinearity in eqn (IDS) is moved to the right-hand side, then the remaining

left-hand side is a periodic Sturm-Liouville problem as described above, that is

" (pm!) ml/a.'«I +rp(=»'l ) + --, '1 = ---'--'.
Cbba.- (I +rp(=»I/ l

Thus, a Green's function exists and the equation could be written as

( 119)

(120)

This does not help a great deal in demonstrating existence, but it does indicate that when

equals an eigenvalue of

«I + rp(:»u')' + A.LI =: 0 (121 )

a solution would not exist. The reasoning is that the Green's function does not exist there
because of the ;. - )'i term in the denominator, and so one should not expect a solution.
However, as will be seen, there are twice as many values of a.lm for which a solution does
not exist than those indicated by this argument.
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Table 3. A comparison of the eigenvalues of the homogeneous problem with
some %.111 where the numerical routine did not converge

Squareroot of Squareroot of

:!,,"Mnl/2
eigenvalues of eigenvalues of

log",(%ml ((I +rplu'r +AU = 0 u"+).u = 0

OOסס.0 0
-~.~80 0.9439 0.9821 I
-~.50iJ 0.988~ 0.9962 I
-~.520 1.0350
-~.800 1.9721 1.9~6 2

1.9919 2
-~.980 2.98~9 2.9~80 3

2.9867 3
- 5.105 3.9804 3.9327 4

3.9801 4
-5.200 ~.9537 4.9192 5
-5.210 5.0690 4.9718 5
-5.280 5.9556 5.9073 6

5.9618 6
-5.350 6.9972 6.8974 7

6.9499 7
-5.~IO 8.0339 7.8893 8

7.9364 8
-5.~70 9.22~1 8.8828 9

8.9211 9
9.X777 10
9.9050 10

Following the ilhove argument. the job becomes obtilining the eigenvalues ofeqn (I t8).
These arc expected to be very dose to the eigenvillues of the periodic problem

u" + A.1I = O.

period 2n. which has eigenvalm:s O. I. I. 4. 4•....
It is simple to set up a numericil' scheme to lind them ilpproximatdy. With

u = (1)c

(122)

(t 23)

the Galerkin method gives for eqn (121) a corresponding algebraic eigenvalue problem of

Ac = ),Bc. (124)

where A and Bare nonsingular matrices. This form of the eigenvalue problem can be solved
by EISPACK, and was, with N = 51.

As was pointed out in the last section, the method did not converge for some regions
of':J.jm. In Table 3 arc displayed some values in each region fOf which convergence did not
occur: the value

the squ;lferoots of the numerically computed eigenvalues of eqn (121), and finally the
squareroots of the eigenvalues of

tl' +).u = o. (125)

The correspondence is clear. In fact. the nonconvergence corresponding to ;, ::;:; 4 was
not found during the original phase speed calculation. where the method converged for
loglo (':I./m) = -5.1 t and -5.12. Rather it was found by examining
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Fig. 5. A plot of '1(y) for frequencies above and below log "' (:l/m) = - 4.5.

( 126)

for A. ~ 4. which gives log,o (:x;'m) ~ -5.107.
A surprising item is the factor 2 which appeared in the perturbation and now again in

the numerical solution. There is more hcre than

being an eigenvalue of the homogeneous problem. So a conjecture: The nonlinear ordinary
dilrerential equation. eqn (107), has solutions except when

equals an eigenvalue of the corresponding homogeneous equation. eqn (121).
There is even more evidence than presented above that solutions do not exist. and this

gives us greater insight into the solutions '1 and what happens near the peaks.

060

050

020

010

y

Fig. 6. A plot of '1(v) for frequcncics abovc and below log, 0 (l1.(m) = - 4.8.
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Fig. 7. A plot of ,,(1') for frequencies above and below 108,0 (:xim) ~ -4.98.

Figures 5, 6 and 7 show the solutions to eqn (107) for

It}m
2 - - ~ I. 2 and 3.

c66 oc
( 127)

respectively. Each figure has two solution curves. One curve is for a frequency a little less
than one that did not converge, and one for a frequency a little greater. The character of
the solution changes in a substantial way, sort ofOip-llopping. In the perturbation solution,
the coellicient of the respective frequency changes sign at the transition point. and the
numerical solution shows a similar effect.

Finally, some discussion of wavelengths is appropriate. Using the first term of the
perturbation expansion,

( 128)

one has

(129)

which leads to the wavelength:

As:x = 2rr/h this gives

oc ~66Yl ~ h- -
m p

(130)

(131 )

and for 2JP/C66 m/oc ~ n one obtains

21z
Y. ~-.

n
(132)

The wavelength where solutions do not exist is twice one period of the material. for
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n = 1, or tiJlIr layers of the ... O 90 0 90 material. Comparing these wavelengths with
those exhibited by the '1 in the previous figures, it is seen that the wavelength of these waves
is twi<.:e the wa\dength which the corresponding '1 would be, if it existed.

Equatil)n ( 131) may be used to get an idea of wavelengths for various l m. For lIN 1
the \\avelength is about 33 meters, and for lm = 10 ", the wavelength is about 0.0033 em.
For higher frequencies than this, though some were presented in Table 2. ~l model should
be used which t;lkes into account the microstructure of the layer. since the tibers an: 0.001
l'm in diamcter.

Some Cl)lllments seem in order. First. the factor of ~ which appears in this section is
not a result of the method. If one chose to let h cover two complete periods of layering. all
the extra Ft)urier coetlkients would vanish and the same frequencies would lack solutions
as before. Thus. there is something real about it. Second. although the perturbation was
not very accurate numerically near the transition points in the solution. it did however
predict the l{ualitative behavior as to how the solutions would change. Third. the reason
why the numerical solution portrays no more peaks for highcr frequencies in Figs .\ and -+
is th;tt higher frequel1i:y Fourier tcrms in the numerical basis would be needed ill pick up
the higher frequency terms in the solutions. which terms kad to the peaks. Finally. I'llI' this
material the frequencies where the solution does not exist are roughly

1 /1/ rr JCh"\' ::::; = = 1.611 l\.H II.
It 'l. ~It I'

(U3)

with n any p\lsitive integer.
As a pradical matter. these are the frelluencies whidl the designer should take into

account in the lise of these materials. for they kad to large strains.

SO~II-: :-';U"'II·:RIC,\1. RI-:SlJl.TS FOR Till-: 1'i\!V\I.I.IT WAVI-:

In a similar fashion. the parallel waves were examined llllmerically. These waves
required more lerms in the perturbation in order to show good agret:ment with the nUlllerical
results.

Using the Galerkin method, eqns (55) and (56) kad to a generalized eigenvalue problem
of the form

( 134)

where A. IJ. and C are symmetric materials. This;' is the sallle inverse wavespeed whidl
appears in ellns (65) and (66). If these waves wen: dispersive. then I. would depend upon
III.

Elluation (134) can be '(lctored to give

( - C 0) (c:) = I. (0 ') ((~)
-1/ 'r A 0 y

( 135)

where \: is a dummy vector. This is a form or an eigenvaluc problem which can be solved
by EISPACK. Using the double precision RGG path and 19 Fouricr basis functions for
both '1 and II. some results were obtained.

Of the eigenvalues. rour are round to be real. They came in pairs. a positive and a
negative one for the longitudinal wave. and a positive and a negativc one for the transverse
wave. These correspond to waves travelling in the +x and -x directions.
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Table 4. The parallel wave numerical results for 7./m = I (Iog,o (7.,m) = 0)

Two terms Six terms
: ~p(:) ~(:) % Error !lp.,,(:) % Error

0.3307 0.( 122E-06 0.1086E-06 -3.231 0.1 I22E-06 -0.011
0.6614 0.82IOE-07 0.906IE-07 10.361 0.82IOE-07 -0.011
0.9921 0.5 I94E-07 0.6280E-07 20.897 0.5195E-07 0.002
1.3228 0.2270E-07 0.2819E-07 24.182 0.2270E-07 -0.002
1.6535 -0.7873E-08 -0.9482E-08 20.425 -0.7873E-08 -0.004
1.9842 -0.3674E-07 -0.4612E-07 25.522 -0.3674E-07 0.000
2.3149 -0.678IE-07 - O.7776E-07 14.673 -0.6782E-07 0.002
2.6456 -0.9585E-07 - 0.10 IOE-06 5.351 -0.9584E-07 -0.007
2.9762 -0. 1287E-06 -0.1 133E-06 -11.974 -0. I286E-06 -0.013
3.3069 - 0.1287E-06 -0.1 133E-06 -11.973 - 0.1286E-06 -0.012
3.6376 -0.9585E-07 -O.IOIOE-06 5.350 -0.9584E-07 -0.007
3.9683 -0.6782E-07 -0.7776E-07 14.667 -0.6782E-07 -0.004
4.2990 -0.3674E-07 -0.4612E-07 25.519 -0.3674E-07 -0.002
4.6297 -0.7873E-08 -0.9482E-08 20.430 -0.7873E-08 0.000
4.9604 0.2270E-07 0.2819E-07 24.184 0.2270E-07 -0.001
5.2911 0.5195E-07 0.6280E-07 20.891 0.5195E-07 -0.003
5.6218 0.82IOE-07 0.906IE-07 10.357 0.82IOE-07 -0.005
5.9525 0.1 122E-06 0.1086E-06 -3.229 0.1I22E-06 -0.010
6.2832 0.1359E-06 0.1148E-06 -15.542 0.IJ59E-06 -0.013

Computed wave speed = 22913 ft s·'.
Perturbation wave speed = 22914 ft s".

Table 4 displays results for aim = I. or v = 50 Hz. Next. Table 5 shows a wide range
of results. from aim = 10' ~ (v = 50.000 Hz) to aim = 10 2 (v = ! Hz). Here the wavelengths
are given by

f
'-

c" II
wavelength ~ p a ( 136)

and with II = 0.02 for the case considered. rxlm = 10 3 has a wavelength of 14 em. and
(Xlm = 10 2 has a wavelength of 14 km. For (Xlm below 10- 4 EISPACK had errors. and for
(Xlm = 101 and above the "longitudinal" eigenvalues it lost all relation to the wuvespced as
their wavespeed rapidly increased. For small frequencies. the eigenvalues for the transverse
wave were very numerically sensitive and EISPACK was unable to obtain them accurately,
even in double precision.

It was noted thut the e I perturbation solutions did not exist for certain frequencies,
and a calculation of eqn (76) for the longitudinal waves gives the frequencies as

v = n6.34 MHz, ( 137)

which correspond to rxlm = 7.88 x 10- 6 which was beyond the range of the numerically
considered values. It should be noted that all the results shown were for frequencies

Table 5. The parallel wave perturbation solution compared with the computed solution
for various 7./m. The perturbation wave speed is 22914 ft 5. 1 and 5332 ft 5 -'.

log,o (%/m)
Wave s!"-"Cd (ft s' ')

Longitudinal Transverse
JI.

Two terms Six terms
Max. % error Max. % error

-3.0
-2.0
-1.0

0.0
1.0
2.0

22911
22938
22919
22913
22913
22914

5256
5254
5251

25.72
25.66
25.59
25.52
25.51
25.54

-0.43
0.12
0.06

-0.01
-0.02

0.03
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significantly below the first frequency for which the first-order perturbation did not exist.
Based upon the richness of behavior displayed by the perpendicular case. we probably
should not draw many conclusions about these higher frequencies. Also. for this material.
the frequencies of nonexistence for the transverse wa\cs turned out to be complex. and thus
not physically realizable.

SC\l\lARY

A perturbation approach \vas presented and shown to give good results in wave
propagation. It also predicted qualitative behavior in regions where solutions of the per­
turbation approach did not exist.

The analysis revealed that a discrete spectrum of freq uencies (see eqns ( 132) and ( (33))
gives rise to large stresses and (elastic) strains. \\'hile it is well recognized that large
stresses and strains are in violati~m of the linear hypothesis. nevertheless important physical
information can be extracted from the results. Fllr ex.ample. in the Linear Theory of
Fracture. although the stresses close to the crack tip arc very large. important physical
results have been obtained on the bases of linear elasticity. Be that as it may. the authors
believe that this phenomenon is a form of resonance attributed to the particular layered
stnn;tun:. These frequencies should be considered hy the designer of composite structures
for they may lead to failures and possibly the premature loss ~)f a structure.

Finally. the ahove results may now be used to 1r1vestigate the ctl"ccts that this type of
wave has on the meehanislll of failure at pre-ex.isting cracks. This study h;\s recently been
cOlllpleted ami the results will he n.:ported in a follow-up paper.
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